Analytics

Top 5 Data Science Projects Using R Programming

Summary

This article will take you to the world of R Programming and its technicalities. It will provide you with the answers to question like What is R Programming all about? Whether learning it is difficult or easy, what type of projects can you do in R? And it will detail you on the best engineering projects based on R Language, that you can take up. It will briefly detail you on the applications of R programming language and what purpose does learning it serves in today’s industrial setup.

Read more..

Learn more about Analytics


Note about Analytics Note:

Have you checked out our projects on Analytics yet?
Analytics Kit will be shipped to you and you can build using tutorials. You can start with a free demo today!

1. Data Analytics using R


What is R programming?

Founded and created by Ross Ihaka and Robert Gentleman at the University of Auckland in 1993, R is a Language to carry out programming and you can run the software for any purpose like to study, change, and distribute it in any adapted versions, i.e. it is free software. It is a widely used powerful programming language- employed for statistical modeling, computing, Machine Learning algorithm, and data visualization. It also includes an extensive catalog of graphical representation methods and reporting. Under the GNU General Public License, R is freely available and pre-assembled binary versions are available for the various operating systems like Linux, Windows, and Mac.

As it is open-source, R savors the community support of fervent developers who continuously put in their efforts in releasing new packages, updating R and making it a reliable programming package in the domain of Data Science. You can download this software for free from this “https://www.r-project.org/” website. Due to its communicative syntax and user-friendly interface, R Programming has become famous amongst programmers, statisticians, knowledge analysts, researchers and marketers to retrieve, clean, analyze, compile and present data.

Many renowned tech-giants like Twitter, Ford, Google, Uber, Microsoft, and Facebook are using this software to make calculated decisions and even contributing to the R ecosystem.

Some calculated steps are performed in series to do data analysis with the help of R, namely: Programming, Transforming, Discovering, Modelling and Communicating the results at the end.

Programming: R is a brief, concise and accessible programming tool that is clear to understand.

Transform: A collection of graphical libraries that are designed specifically for data science is also present in R.

Discover: Allows the user to investigate the data, refine their hypothesis and analyze them thoroughly.

Model: R provides a wide range of tools to capture the right and accurate model for your data representation.

Communicate: You can integrate codes, graphs, and outputs to form a report with R Markdown or can build gripping apps to share with the people all across the globe. R Language possesses a variety of ways to present and share data, either through a markdown document or a shiny app. Everything can be put on in Rpub, GitHub or the business's websites.

Explore more about R

Why learn R?

Why learn R?

R is an integrated software that facilitates data manipulation, calculation, and graphical representation. The following features are provided in the R software:

  • R is a comprehensive programming language that facilitates step-by-step programming which involves functions along with object-oriented programming with generic functions. It has an effective data handling and storage facility and has a range of operators for calculations on arrays and in particular, matrices.
  • It is an interpreter-based language hence R produces a machine-independent code. It also facilitates the easy amendment of errors in the code.
  • R has all-round community support that provides technical assistance, conducts seminars and several boot camps to get you onboard with R.
  • It consists of a large, articulate and integrated collection of intermediate tools for data analysis and displays it graphically either on-screen or on hardcopy. It includes conditional loops, user-defined recursive functions along with input and output facilities.
  • R Programming is considered to be a state-of-the-art technology having aesthetic graphical libraries like ggplot2, plotly, etc. which assists the appealing libraries for creating well-defined plots.
  • R Language has its own LaTeX-like documentation format, which is used to provide comprehensive documentation in multiple formats.

The job scenario is bubbling with opportunities as R is the primary tool for Data Science. The immense growth in Data Science has led to a rise in demand for skilled engineers in this sector.


Latest projects on Analytics

Want to develop practical skills on Analytics? Checkout our latest projects and start learning for free


Discover more about R

Is R difficult?

Well, for the starters it would be slightly difficult to get through with the conceptual terms associated with R programming. However, as you proceed further with the learning process, you will begin to enjoy coding in R Programming.

Initially, the language used to be quite confusing and not as structured as other programs available. Later on, to overcome this disadvantage, Hadley Wickham developed a collection of packages called tidyverse. The rule of the game changed for the best. Data manipulation becomes inconsequential and interesting. Graph creation and analyzation are not cumbersome anymore.

R can effectively communicate with other language like Python, Java, C++, etc. R Language has accessibility to the world of big data as well. You can also connect R with different databases like Spark or Hadoop. R Programming has evolved over time and has allowed the parallelizing operations to increase the computation process. The parallel package allows you to carry out tasks in different core sectors of the machine.

Learn more about R

Best engineering projects on R programming

They are numerous tools available in the industry to perform data analysis and computations.  It’s obvious that learning a new language requires you to invest some time. If you want to give the best insight from the data, then you must spend some time to learn the appropriate tool, which is R Programming. R is definitely a good trade-off between implementation and data analysis. As a beginner in the domain of data analysis, selecting a data science mini project in R Programming at an appropriate skill level will help you learn new data science skills as you proceed towards the completion of the project. Below mentioned are some good recommendations from the experts in this sector on some of the must-do projects in R Programming for engineering students:

1. Data Analytics using R

Data Analytics is used in almost all the fields like hospitality industry, public service agencies, healthcare companies, and retail businesses. In this project, you will learn about R programming and how to use it to perform data analysis. You will also learn the basics of data analysis and usage of packages like ggplot2 and dplyr in R.

Learn more about this project


How to build Analytics projects Did you know

Skyfi Labs helps students develop skills in a hands-on manner through Analytics Online Courses where you learn by building real-world projects.

You can enrol with friends and receive kits at your doorstep.

You can learn from experts, build working projects, showcase skills to the world and grab the best jobs.
Start Learning Analytics today!


2. Predict Wine Preferences using Wine quality Dataset

Wine tasting is a unique and elite profession. It is usually difficult to guess what the customer would like based on the memory from their past preferences. In this machine learning project, before suggesting any particular variety of wine to the customer if we can identify their taste using data mining processing from the physical and chemical properties of the wines, it would be a cakewalk for the restaurant to recommend wines.

Learn more about this project

3. Predict Credit Default

Banks usually rely on credit score prediction models to either pass a loan approval request or deny it. A good prediction model is essential for a bank so that it can provide maximum credit without exceeding the risk threshold value. The predictive models will be build using various approaches like random forests, gradient boosting and logistic regression. By the time this project concludes, you will be able to build a predictive model that will automatically score each applicant with a credit score which is easy to interpret.

4. Predict Churn for a Telecom Company

Customer churn refers to a decision taken by the customer about ending a business relationship. It also implies the loss of clients or customers. Customer loyalty and customer churn perpetually add up to 100%. If a firm promises a loyalty rate of 70%, then its churn rate or the loss in the number of customers is 30%. As per the 80/20 client profitableness rule, 20% of customers are generating 80% of revenue. So, it is imperative to predict the users likely to churn from the business relationship and the factors influencing the customer decisions.

5. Classifying Loan Applications using German Credit Dataset

The German credit dataset consists of information on 1000 loan applicants. Each applicant is described by a set of 20 different characteristics. Of these 20 attributes, 17 attributes are discrete while the other 3 are continuous. The main plan is to use techniques from the sphere of data theory to pick a group of vital attributes that will be used to classify tuples.

Apart from these projects, you can also refer to the following:

  • Bigmart Sales Prediciton
  • Iris Flower Classification
  • Height and weight prediction using heights and weights dataset
  • Song Prediction using million song dataset
  • Traffic prediction using time series analysis dataset
  • Human activity prediction using human activity recognition dataset
  • Movie recommendation using movie lens dataset
  • Tweet classification using twitter classification dataset
  • Sound classification using urban sound classification dataset

Hope you got some good list of engineering projects on R programming. If you have any other good project ideas, let us know in the comments.

Top 5 Data Science Projects Using R Programming
Skyfi Labs Last Updated: 2022-05-14





Join 250,000+ students from 36+ countries & develop practical skills by building projects

Get kits shipped in 24 hours. Build using online tutorials.

Subscribe to our blog

Stay up-to-date and build projects on latest technologies